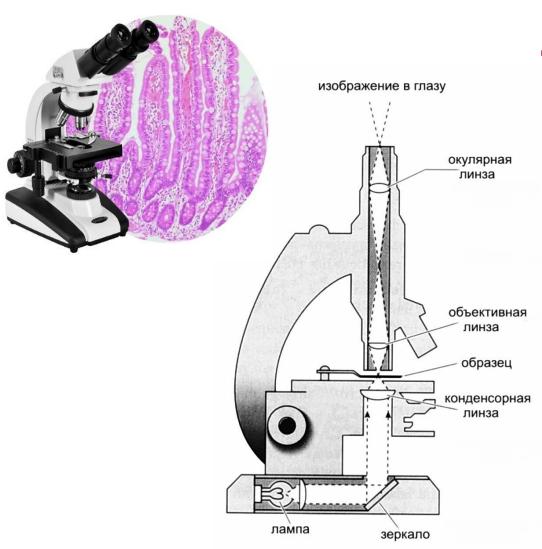


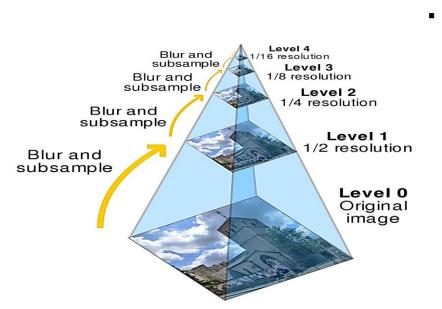
профессор **А.В.Павлов**

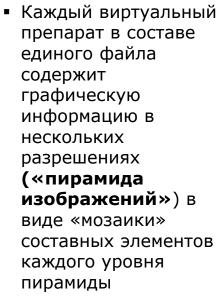

Современная световая микроскопия

в изучении клеток, тканей и органов

❖ Световая микроскопия (светлое поле в проходящем свете)

- Наиболее распространенный, начиная с XIX века, метод световой оптической микроскопии, основанный на изучении препарата в проходящем свете:
 - о свет от источника (осветитель) собирается линзами конденсора и пропускается через изучаемый препарат
 - далее свет направляется в линзы объектива, в фокальной плоскости которого формируется изображение
 - о сформированное изображение проецируется в линзы **окуляра** и после увеличения направляется непосредственно в **глаз** наблюдателя или выводится на экран монитора
 - о максимальное увеличение **1300 раз**
 - разрешающая способность 0,2 мкм





Виртуальная световая микроскопия

 Прогресс биомедицинских технологий, телемедицины и компьютерной техники в XXI веке дал техническую возможность генерировать качественные оцифрованные копии гистологических препаратов с помощью специализированных роботизированных устройств (гистосканеров) Данная методика цифровой визуализации получила в литературе название технологии WSI (Whole Slide Imaging), а проводимая на компьютере навигация по оцифрованным образцам обозначается как виртуальная микроскопия

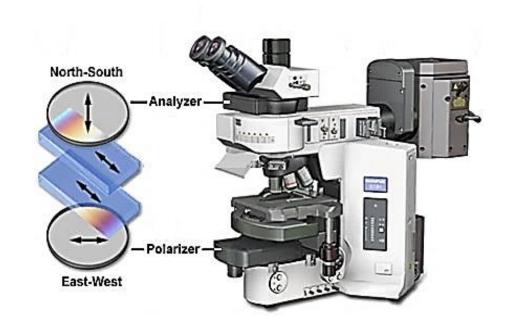
R.A. Zsigmondy (1865-1929)

H.F.Siedentopf (1872-1940)

- Специальный вид световой микроскопии, в котором контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом
- Предложен в 1906 г. R.A. Zsigmondy H.F.Siedentopf
- Особенностью метода является боковой способ освещения образца, при этом неоднородности микрообъекта рассеивают падающий свет и в микроскопе изображение образца наблюдают в рассеянном свете, а «освещающий» световой пучок не попадает в объектив
- Ииспользуется для изучения живых неокрашенных биологических объектов — простейших, изолированных клеток, тканевых культур

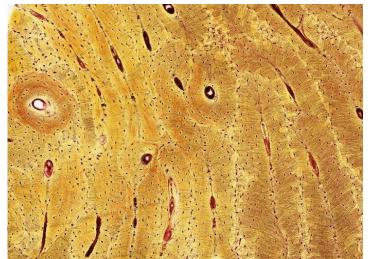
Objective Objective Образец Маска конденсора Источник света Светлое поле

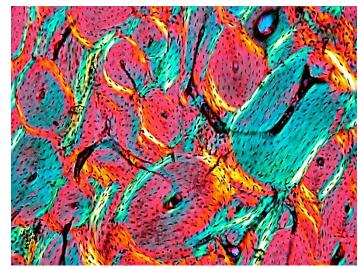
• Темное поле


Световая микроскопия в темном поле

H.C.Sorby (1826-1908)

Поляризационная световая микроскопия


- Метод световой оптической микроскопии, основанный на освещении объекта поляризованным светом
- Предложен в 1863 г. H.C.Sorby
- Оптическая система микроскопа содержит несколько поляризационных фильтров, которые вращаются относительно друг друга (поляризатор и компенсатор перед конденсороми и анализатор за линзой объектива)
- Когда двулучепреломляющий образец помещается между скрещенными поляризаторами, свет, падающий на материал, разделяется на два составляющих луча, амплитуда и интенсивность которых изменяются в зависимости от оптических свойств образца
- Настройка изображения производится вращением поляризационных фильтров или предметного столика.



Поляризационная световая микроскопия

Глаз Окуляр Анализатор Линза объектива Образец на поворотном столике Линза конденсора Поворотный компенсатор Поляризатор Источник света

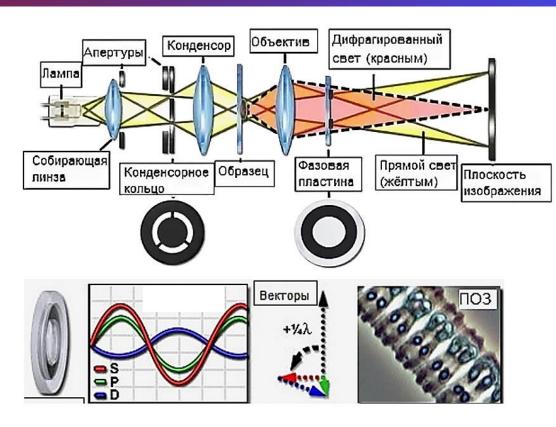
Пластинчатая кость

Светлое поле

Поляризационная микроскопия

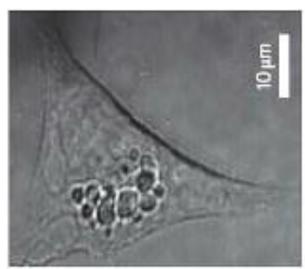
• Применяется для обнаружения и изучения объектов или их структур, обладающих свойствами анизотропии или двойного лучепреломления (миофибриллы, волокна соединительной ткани, кристаллические структуры)

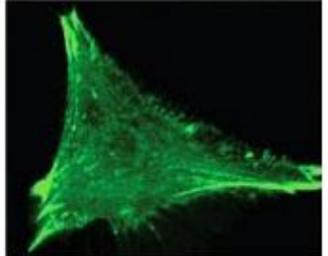
Frits Zernike (1888-1966)

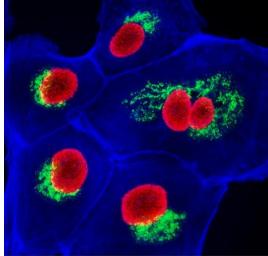

- Специальный метод световой микроскопии, основанный на изменении фазы световой волны, проходящей через прозрачные бесцветные структуры, благодаря чему повышается контрастность изображения
- Изобретен в 1932-35 гг
 Ф.Цернике (Нобелевская премия по физике 1953 г.)
- Используется для изучения неокрашенных живых или фиксированных клеток

Фазово-контрастная световая микроскопия

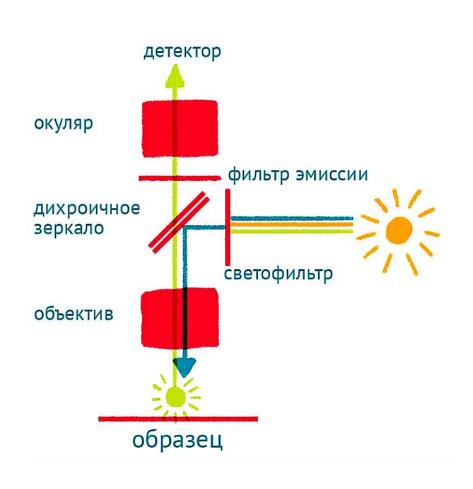
 В оптическую систему вводятся специальные устройствв (кольцо конденсора и фазовая пластина объектива)

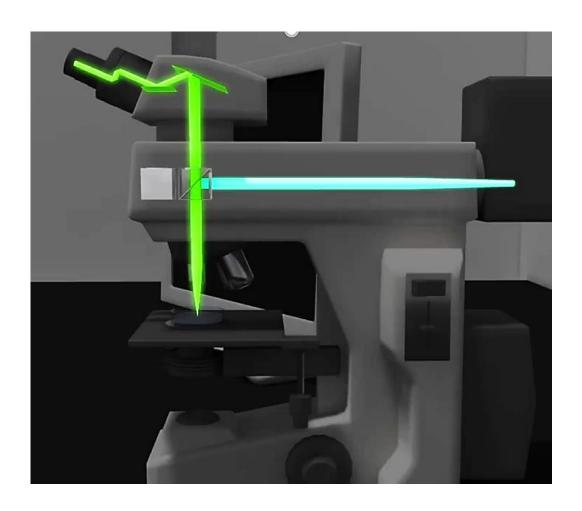



- 1. Свет от источника разбивается на два когерентных световых луча, один из них называют опорным (желтый), другой предметным (красный), которые проходят разные оптические пути
- 2. Фазовая пластинка, сдвигает по фазе на 1/2 длины волны опорный луч относительно предметного, благодаря чему достигается контрастное изображение

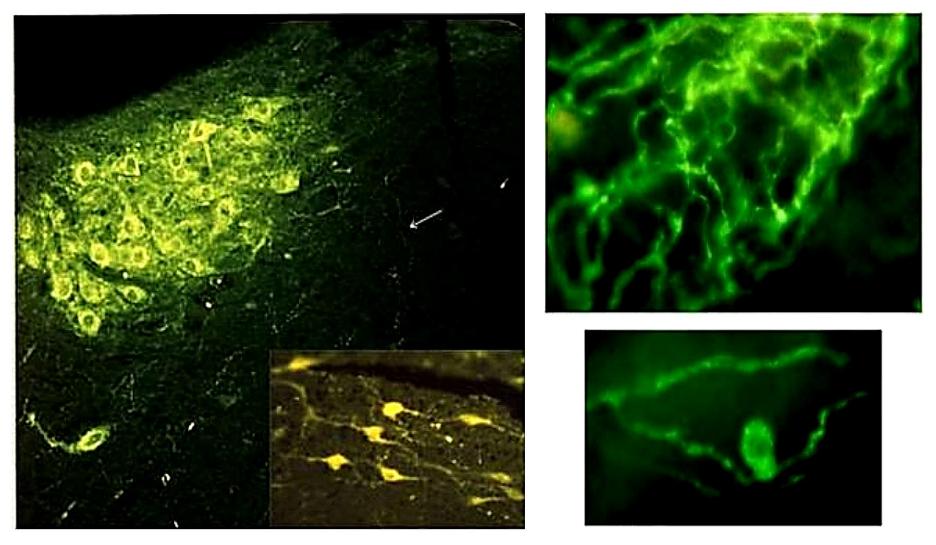

Люминесцентная (флуоресцентная) световая микроскопия

- Метод световой оптической микроскопии, основан на наблюдении
 люминесцентного свечения микрообъектов в отраженном свете
 при освещении их сине-фиолетовым светом или ультрафиолетовыми
 лучами
- Разработан в 1911 г. О.Хеймштадт и улучшен в 1929 г. Ф.Эллингер и А.Хирт
- Источники свечения:
 - о собственная (первичная) люминесценция
 - о наведенная (вторичная) люминсценция после предварительной окраски флюорохромами (красители, которые избирательно связываются с определенными структурами клеток)

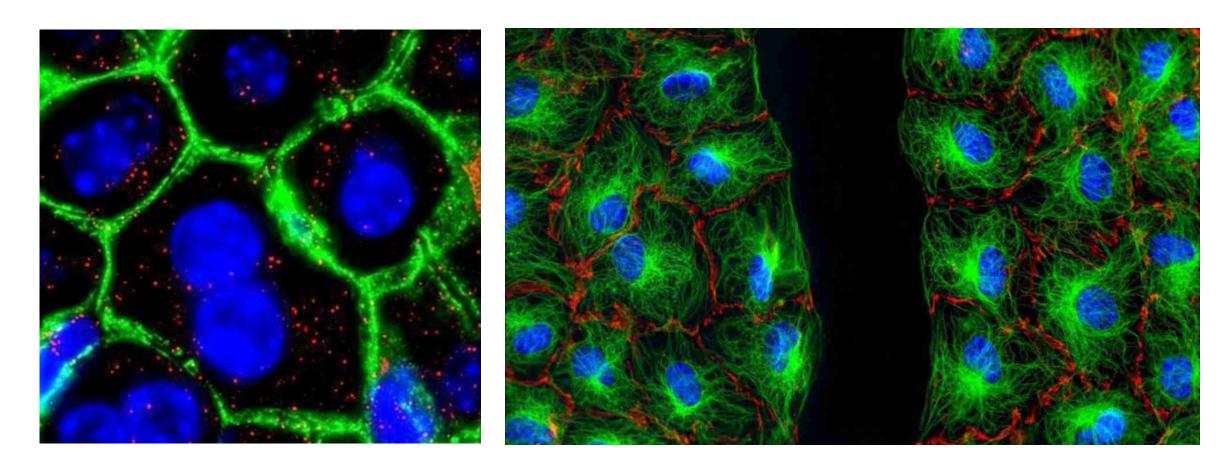



Светлое поле

Люминесцентная микроскопия


Люминесцентная (флуоресцентная) световая микроскопия

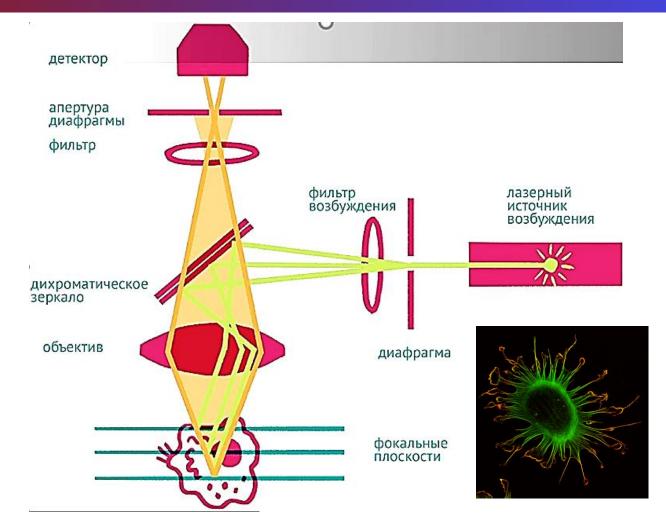
 Дихроичное зеркало и объектив фокусируют возбуждающий свет на препарате и направляют флуоресцентный свет к окуляру по другому оптическому пути



❖ Первичная люминесценция: метод Фалька (моноамины)

■ Катехоламины, серотонин

❖ Вторичная люминесценция: *флуорохромы*

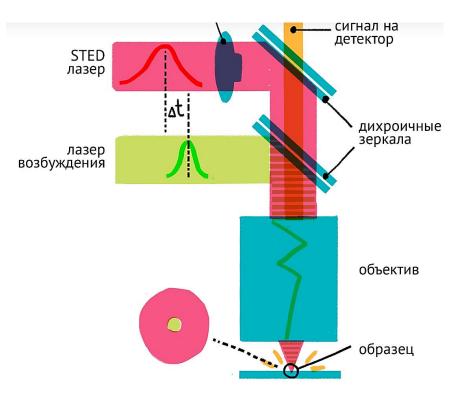

■ <u>DAPI</u> - флуоресцентный краситель, который прочно связывается с ДНК; широко используется в флуоресцентной микроскопии (ДНК - синий цвет) для окрашивания как живых, так и фиксированных клеток.

• **EGFP**, **ECFP**, **EYFP** – цитоплазматические флуоресцентные белки

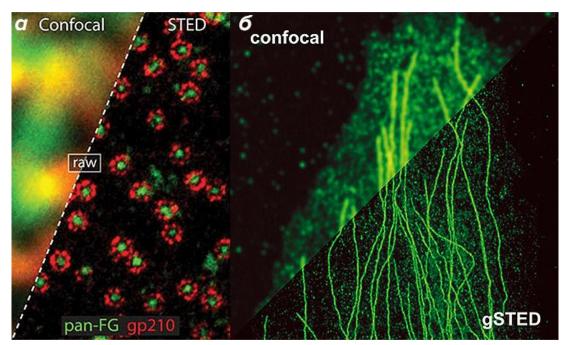
❖ Конфокальная лазерная сканирующая микроскопия

- В конфокальном микроскопе микрообъект сканируется лазерным лучом, вызывающим флуоресценцию специальных красителей в определенной плоскости (оптический срез ткани)
 - разработан в 1969-1971 гг. Д.Эггер и П.Давидович
 - пучок света под воздействием лазера практически не расходится, что обеспечивает высокий контраст и разрешение
 - о включает сканирование образца для создания **компьютерных оптических срезов** толщиной до 250 нм с использованием видимого света;
 - в результате серии послойных снимков формируе тся трехмерное изображение микрообъекта

Метод позволяет изучать внутреннюю структуру клеток, в том числе живых; исследовать развитие клеток и молекул в реальном времени

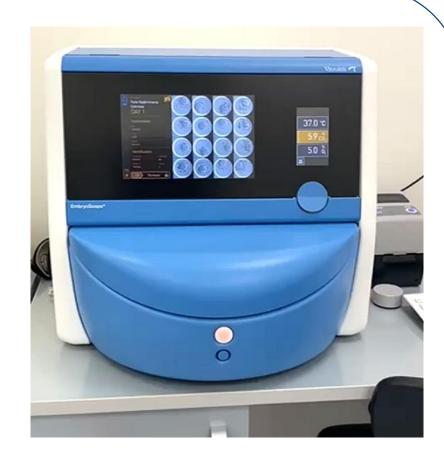


© Nobel Media AB. Photo: Mahmoud Stefan W. Hell


© Nobel Media AB. Photo: A. Mahmoud William E. Moerner

Нобелевская премия по химии, 2014 г.

❖ Методы суперразрешения (STED, PALM/STORM)


- Возбуждение флуорофора происходит с помощью двух лазеров один возбуждает флуоресценцию в точке фокуса, в то время как другой тушит ее вокруг этой точки.
- Таким образом, флуоресценция возбуждается только в узкой фокусной точке, которая по размерам гораздо меньше предела дифракции.
- Метод позволяет получать изображения с разрешением меньше 20 нм в поперечном направлении, и около 40–50 нм в продольном направлении
- По сравнению с лазерной кофокальной микроскопией качество изображения существенно выше

Преимущества микроскопии суперразрешения. а— Ядерная пора («обычная» конфокальная микроскопия vs. STED). б— Цитоскелет («обычная» конфокальная микроскопия vs. STED).

Микровидеосъемка живых объектов

- Замедленная киносъемка видеосъемка с частотой, меньшей стандартной частоты и воспроизведения (24 кадра в секунду). При проекции полученного изображения с нормальной частотой движение объектов съёмки на экране выглядит ускоренным
- Цейтраферная съемка /таймлапс (от нем. Zeitraffer, англ. time lapse) разновидность покадровой замедленной съёмки, когда интервалы между съемкой кадров строго равны между собой и задаются автоматически при помощи таймера

• **Эмбриоскоп** — инкубатор для культивирования эмбрионов с системой непрерывного наблюдения time-lapse.

- Ускоренная съемка
 (рапи́д от фр. rapide —
 быстрый) видеосъемка с
 частотой от 32 до 200
 кадров в секунду
- Используется для
 получения эффекта
 замедленного движения
 при воспроизведении со
 стандартной частотой (24
 кадра/сек) кадров